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LE’ITER TO THE EDITOR 

Bose realization of a non-canonical Heisenberg algebra 

G Brodimast, A JannussistS and R Mignanis 
Dipartimento di Fisica, I Universitk di  Roma ‘La Sapienza’, Piazzale Aldo Mora 2,00185 
Roma, Italy 

Received 15 November 1991 

Abslrsd. We find out the Base realization of a generalized Heisenberg algebra, in which 
the bracket of the annihilation and creation operators is proportional to a polynomial 
function of the number operator. The eigenvalues of the corresponding oscillator are 
derived in a special case. We stress also the connection between non-canonical commutation 
relations and q-algebras. 

It is well known that the ususal (canonical) commutation relations between position 
and momentum operators, P and 6, were developed by Heisenberg. Less well known 
is that Heisenberg himself proposed, three decades ago, to generalize the commutation 
rules to a non-canonical form [l]. This new idea by Heisenberg was subsequently 
developed by some authors [2-51 and applied to various physical problems, such as 
mass variation with respect to coordinates [3], coherent states for a generic potential 
[4] and high-energy physics [SI. 

A specific form of a non-canonical commutation relation for P and p̂  is given by [5] 

[ ? , i l = i f ( A )  (1) 

where f ( A )  is an arbitrary Hermitian function of the Hamiltonian k. If the systefn 
under consideration contains some small parameter (2 11, the operator function f (H) 
can be approximated (to the iint order in a) by 

f ( A )  = h +aA (2) 

[P,;] = ifi+iaA(P,Z,). (3) 

so that (1) becomes 

Another example of a non-canonical commutation relation in Fock space is provided 
by the Q-algebra by Kuryshkin [6] 

a ~ + - Q & a - [ ~ , ~ + ] , = f  (4) 

(QE[--l,+m),Q#O) 

t On leave from: Department of Physics, Patras University, 26110 PatraS, Greece (permanent address) 
i Also at: IBR, PO Box 1577, Palm Harbor, FL 34682.1577. USA. 
B Also at: INFN Sezione di Roma, Italy. 
(1 For instance, in (51 it is CI = l / c ,  where I is an elementary length and E the speed of light. 
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As is well known, a great deal of interest about generalized brackets of the kind 
(4) has arisen recently in connection with quantum groups (for a review and exhaustive 
bibliography, see, for example, [7]), which are essentially based on the q-deformed 
Heisenberg-Weyl algebra 

( 5 )  
with q a parameter. 

We want to stress that, although, a priori, there seems to be no connection between 
non-canonical commutation rules of the type (1) and the generalized brackets (4) and 
( S ) ,  actually they are deeply interrelated. Let us indeed prove that, for the harmonic 
oscillator, relation (3) in Hilbert space leads to the Q-algebra (4) for Fock operators 
(for a preliminary discussion at this point, se: [SI). 

For a harmonic oscillator Hamiltonian H the non-canonical commutations rule 
(3) becomes 

[A, / p I q G  AA+-qA'A = 4 6  

i a  
2m 

[?,b] = i h  + - ( $ 2 + m 2 w 2 $ 2 ) .  

The Fock representation of ? nd p* in terms of A, A+ reads, in this case - 

where A is a suitable scale factor needed to get a closed algebra for A, Lit 
Replacing (7) in (6) we easily find 

whence the Q-algebra (4) immediately follows, with 
1 + a t i w / 2  

Q =  1 - a h w / 2  

provided that 

Due to the connection established 1 ~ we, it is wor investigating non-canonical 
Heisenberg algebras both in the ususal Hilbert space and in Fock space. For instance, 
a possible generalization of the q-deformed algebra ( 5 )  is provided by [9] 

A *  
nn A A +  ~ n X +  yn n - ,  X - ((.cl \ .a,  (!!) 

where 6 is the ususal number operator and the function f ( 6 )  is a suitable (smooth) 
functiont. 

Of course, it is not a simple task, in general, to deal with (11). even fo r f (6 )  a 
regular function. We want to show here how to approach this problem in the case 
Q = 1 and f (6)  a polynomial of degree k in 6, i.e. 

with ai ( i  = 1,. . . , k) real numbers. 

t I f f ( f i )  = qA,  we get the two-parameter quantum algebra considered in 1101 

[A, A']= P(s)= ~ + a , < + a , ~ ~ + .  . .+ax6* (12) 
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Let us find a boson realization of the annihilation and creation operators A, A+ 
We apply the bosonization method [8,9] and seek A, A+ in the form 

obeying the commutation rule (12). 

A= F(A+l)n^ A+ = a*+F(A+ 1) (13) 

where 6, 6', 6 = 6'6 are boson operators, satisfying the ususal commutation relations. 
Then, from (12) we get the following equation for the operator function F($: 

(14) (A+ 1)F2(A+ 1) - W ( A )  = P(A). 

By putting 6F2(A)= L,, we have 

L.+,-L.=P(A) (15) 

i.e. a set of diiierence equations with initiai condition i , = O .  
The solution of (15) has the form 

A(A+l) A ( A + 1 ) ( 2 A + 1 ) + a , [ ~ ] 2  
6 L.,, = (A+ 1) +a, ~ + (21 2 

A(A+l) (26+ l)(3A2+36-1) +... +a,S* 
30 +a4 

where 

with the pl's being Bemouilli numbers. From (17), (13) weget the explicit expressions 
of the operators A, A+: 

A(2A+l) P ( A + l )  
+a3 6 

112 + . . . I  6 6 ( 2 6 +  1)(3A2+3A- 1 )  
30 + a4 

A A(2A+l) A2(A+l) 
+a3 6 

112 +...I . 6(2A+ 1)(3A2+3A- 1 )  
30 J 

+ a4 

The operators A, A+ are true (non-canonical) annihilation-creation operators, since 
their action on the Fock states is given by 

AlO) = 10) A ' l O ) =  11) (19) 
n - 1  ( f l - l ) ( 2 n - l )  n2(n-1)2  112 

6 + a 3  +...I In-1) (20a) 

n n(2n+1)  n2(n+1)2 
+ U 3  6 
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The above relations p ry ide  us straightforwardly with the commutation and anti- 
commutation rules for A, At. We have 

+...I n^(2n^+ 1)(3a2+3n^ - 1 )  
30 + 

6-1  (&1)(2n^-l) (n^-l)% 
+a, 6 

+. . .] ( G -  1)(2n^ - 1)(3n^’-3n^+Z) 
30 + 014 

whence one easily recovers (12) and gets 

n ^ ( Z A + l )  n^’(n^2+1) {A, A’}= (2n^+l)+a,n^2+a2 + a 3  3 

~ 12n^4+26n^2-9n^+1 
30 

+ a4n 

We want now to construct the Fock representation according to the relations 

where A is a scale factor to be determined. 
The commutation relationof 2, p^ is easily found and reads 

I [z, p*]  =- AhP(n^). 
2 

Moreover, from (22) we get for the Hamiltonian fi 

+... ] . (25) 
n^(24+1) n^,(n^,+l) 

+a3 Aiio 4 [ 3 
- hho - - 

H =- {A, A+) =- zn^+ 1 + a,n^2+az 
4 

The right-hand side of the above equation is a polynomial of degree ( k f l )  in n̂  and 
therefore it is possible, in principle, to find a solution ;(I?). 

This is required in order to put the commutator (24) in the form (1) of a non- 
canonical Heisenberg algebra. A way to solve (25) is to express 6 ( H )  as an expansion 
in powers of H, namely 

(26) n^(fi)=fo+f,A+f*fii’+. . . + X f i ‘ + .  , . . 
The parameter fo satisfies the equation 
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whereas the other X's ( I  = 1,2 , .  . .) obey equations of the type 

.... 
Replacing (26) in (24) we get therefore 

[g, 61 =- Ah[ ( I  + a,&+ a&+. . . + a&) + plA + &*+. . . . + p&* + . . .I (29) 

where pj are functions off,  , f 2 , .  . . , a,, , . . , ck, 4/Ahw. Then, it is easy to see that 
(29) takes exactly the form (1) if 

I 

2 

(30) 
A 
2 
-(1 +U,.&+ a,fi+. . . +a&) = I 

with 

p( A) = i ( p ,  + p*A+. . . + ptAk-' + . . .). (31)  

Condition (30) (i.e. the requirement of a non-canonical commutation relation for 2.6) 
fixes the value of the scale factor A. 

Let us work out an explicit example by considering the case k = 1, i.e. 

[ A  A'] = 1 +a;. (32) 
From (18), (22) we get 

{A,A+}=2n^+l+an^2. 

The Hamiltonian fi reads 

whence 

--?+J(! -e)+("e/,?hii;) 
n ^ =  (37) a 

The commutator (24) of 2 and p̂  then becomes 

(38) 
1 

[2,p^]=5 hA(l +an^) =ih  

which, for (A2/4)( 1 - a) = I, provides us with the general non-canonical commutation 
relation 



L334 Letter to the Editor 

The eigenvalues of the corresponding harmonic oscillator are given by 

h o  l a  
E" =- ( n  +-+- 2). 

(1 -a )  2 2 (40) 

It is immediately clear from the above formula that a must satisfy the constraint 
0 s  a < 1. For a = 0, obviously, one recovers the standard relations of the ususal 
harmonic oscillator. 
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